欢迎您,请 登录 或 注册

当前位置:首页 医疗器械维修 基础 电子 查看内容

(连载62)开关电源变压器涡流损耗分析-part2

2017-7-14 21:33 阅读: 1465 评论: 0 编辑: ygzx1
[导读](连载62)开关电源变压器涡流损耗分析-part2(连载01)开关电源的基本工作原理(连载02)串联式开关电源输出电压滤波电路(连载03)串联式开关电源储能滤波电感的计算(连载04)串联式开关电源储能滤波电容的计算(2)(连载05) ...
(连载62)开关电源变压器涡流损耗分析-part2
(连载01)开关电源的基本工作原理
(连载02)串联式开关电源输出电压滤波电路
(连载03)串联式开关电源储能滤波电感的计算
(连载04)串联式开关电源储能滤波电容的计算(2)
(连载05)反转式串联开关电源
(连载06)反转式串联开关电源储能电感的计算
(连载07)反转式串联开关电源储能滤波电容的计算
(连载08)并联式开关电源的工作原理
(连载09)并联式开关电源输出电压滤波电路
(连载10)并联开关电源储能电感的计算
(连载11)单激式变压器开关电源
(连载12)单激式变压器开关电源工作原理
(连载13)正激式变压器开关电源
(连载14)正激式变压器开关电源的优缺点
(连载15)正激式变压器开关电源电路参数的计算
(连载16)正激式开关电源变压器参数的计算
(连载17)正激式开关电源变压器初、次级线圈匝数比的计算
(连载18)反激式变压器开关电源part1
(连载19)反激式变压器开关电源part2
(连载20)开关电源电路的过渡过程part1
(连载21)开关电源电路的过渡过程part2
(连载22)反激式变压器开关电源电路参数计算
(连载23)反激式开关电源变压器参数的计算
(连载24)反激式开关电源变压器初级线圈电感量的计算
(连载25)反激式变压器开关电源的优缺点
(连载26)双激式变压器开关电源part1
(连载27)双激式变压器开关电源part2
(连载28)整流输出推挽式变压器开关电源
(连载29)推挽式变压器开关电源储能滤波电感、电容参数的计算
(连载30)推挽式变压器开关电源储能滤波电容参数的计算
(连载31)推挽式开关电源变压器参数的计算
(连载32)推挽式开关电源的优缺点
(连载33)半桥式变压器开关电源
(连载34)交流输出半桥式变压器开关电源part1
(连载35)交流输出半桥式变压器开关电源part2
(连载36)交流输出单电容半桥式变压器开关电源part1
(连载37)交流输出单电容半桥式变压器开关电源part2
(连载38)单电容半桥式变压器开关电源输出电压
(连载39)整流输出半桥式变压器开关电源
(连载40)半桥式开关电源储能滤波电感、电容参数的计算
(连载41)半桥式开关电源变压器参数的计算
(连载42)半桥式变压器开关电源的优缺点
(连载43)全桥式变压器开关电源
(连载44)整流输出全桥式变压器开关电源
(连载45)全桥式开关电源变压器参数的计算
(连载46)全桥式变压器开关电源的优缺点
(连载47)开关电源主要器件之开关电源变压器
(连载48)开关变压器的工作原理
(连载49)脉冲序列对单激式开关电源变压器铁芯的磁化part1
(连载50)脉冲序列对单激式开关电源变压器铁芯的磁化part2
(连载51)变压器铁芯的初始磁化曲线
(连载52)单激式开关电源变压器的伏秒容量与初级线圈匝数的计算
(连载53)单脉冲序列对双激式开关电源变压器铁心的磁化
(连载54)双激式开关电源变压器伏秒容量与初级线圈匝数的计算
(连载55)各种波形电源变压器初级线圈匝数的计算
(连载56)双激式开关电源变压器存在的风险
(连载57)开关电源变压器磁滞损耗分析-part1
(连载58)开关电源变压器磁滞损耗分析-part2
(连载59)开关电源变压器铁芯磁滞回线测量-part1
(连载60)开关电源变压器铁芯磁滞回线测量-part2
(连载61)开关电源变压器涡流损耗分析-part1
当铁芯或铁芯片表面磁场强度的最大值Hm高于磁场强度的平均值Ha时,其差值为:
该数值和磁场强度增量?H之比等于:μaδ2/12ρcτ ,它表征涡流的影响,并与平均导磁率μa及铁芯片厚度δ的平方成正比,与铁芯片材料的电阻率ρc及脉冲宽度τ成反比。
根据(2-62)式可知,铁芯或铁芯片表面的磁场由两个部分组成:
(1)平均磁场,它随时间线性增长,由线圈中固定的电动势感应所产生;
(2)常数部分,它不随时间变化,由补偿涡流的产生的去磁场所形成。
对应铁芯片表面的两部分磁场,我们可以把它们分别看成是由 和 两部分电流产生的。根据安培环路定律:磁场强度矢量沿任意闭合路径一周的线积分,等于穿过闭合路径所包围面积的电流代数和。以及磁路的克希霍夫定律:在磁场回路中,任一绕行方向上磁通势NI(N为线圈匝数,I为电流强度)的代数和恒等于磁压降 Hili(Hi 为磁场强度, li为磁路中磁场强度为Hi的平均长度)的代数和。即:
Hm=N*i/l =N(iμ+ib)/l (2-64)
(2-64)式中, l为磁回路的平均长度; i =iμ +ib , iμ为变压器线圈中的励磁电流; ib为因涡流影响使流过变压器线圈电流增加的电流。根据(2-62)式和(2-7)式求得:
图2-20-a中,Rb为涡流损耗等效电阻,N为变压器初级线圈。由此可以看处,由于受涡流损耗的影响,变压器铁芯被磁化时,相当于一个涡流损耗等效电阻Rb与变压器初级线圈N并联。图2-20-b是更形象地把涡流损耗等效成一个变压器次级线圈N2给损耗电阻Rb2提供能量输出,流过变压器次级线圈N2的电流 ,可以通过电磁感应在变压器初级线圈N1中产生电流ib1 。根据(2-66)式和图2-20,可求得变压器的涡流损耗为:
(2-69)式中,Sl=Vc 为变压器铁芯的体积,S为变压器铁芯的面积, l为磁回路的平均长度, δ为铁芯片的厚度,N为变压器初级线圈匝数, ρc为铁芯片的电阻率,τ为脉冲宽度,?B为磁通密度增量。
由此,我们可以看出:变压器铁芯的涡流损耗,与磁感强度增量和铁芯的体积成正比,与铁芯片厚度的平方成正比,与电阻率及脉冲宽度的平方成反比。
值得注意的是,上面各式中代表面积S的属性,它既可以代表某一铁芯片的截面积,也可以代表变压器铁芯的总面积,当S变压器铁芯的总面积时,相当于上面结果是很多单个铁芯片涡流损耗的代数和。同理,以上各式中代表铁芯片厚度的δ ,既可以代表某一铁芯片的厚度,也可以代表变压器铁芯的总厚度,因为铁芯片的厚度δ 的取值是任意的。
但是,在变压器铁芯总面积相等的情况下,由一块铁芯片或多块相同厚度的铁芯片组成的变压器铁芯,其涡流损耗是不相同的。例如,在变压器铁芯总面积相等的情况下,由一块铁芯片组成的变压器铁芯的涡流损耗,是由两块铁芯片组成的变压器铁

最新评论

扫码打开小程序

扫码安装APP

返回顶部